精英家教网 > 高中数学 > 题目详情
若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.
    

试题分析:根据正四棱柱的几何特征,我们易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角,根据已知中正四棱柱ABCD-A1B1C1D1的底面边长为2,高为 ,求出△D1BC中各边的长,解△D1BC即可得到答案.
∵AD∥BC∴∠D1BC即为异面直线BD1与AD所成角连接D1C,在△D1BC中,∵正四棱柱ABCD-A1B1C1D1的底面边长为2,高为4∴D1B=2,BC=2,D1C=∴cos∠D1BC=,故异面直线BD1与AD所成角的正切值为
故答案为
点评:解决该试题的关键是根据已知条件确定找到两条异面直线夹角,易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,=2=2,中点.
(Ⅰ) 证明
(Ⅱ) 若二面角的平面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为__    ____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

( )已知两个不同的平面,能判定//的条件是
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为
(1)设∠CA1O =(rad),将y表示成的函数关系式;
(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知正四棱锥侧棱长为,底面边长为的中点,则异面直线所成角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知多面体ABC-DEFG,AB,AC,AD两两垂直,面ABC//面DEFG,面BEF//面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为(   )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面内一点与平面外一点的连线和这个平面内直线的关系是________ 

查看答案和解析>>

同步练习册答案