精英家教网 > 高中数学 > 题目详情
已知双曲x+y+1=0的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等
5
,则该双曲线的方程为(  )
分析:根据抛物线的方程算出其焦点为(1,0),从而得出双曲线的右焦点为F(1,0).再设出双曲线的方程,利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值即可得到该双曲线的方程.
解答:解:∵抛物线方程为y2=4x,∴2p=4,得抛物线的焦点为(1,0).
∵双曲线的一个焦点与抛物y2=4x的焦点重合,
∴双曲线的右焦点为F(1,0)
设双曲线的方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),可得a2+b2=1…①
∵双曲线的离心率等
5
,∴
c
a
=
5
,即
a2+b2
a2
=5
…②
由①②联解,得a2=
1
5
,b2=
4
5
,所以该双曲线的方程为
x2
1
5
-
y2
4
5
=1
,即5x2-
5y2
4
=1

故选:D
点评:本题给出抛物线的焦点为双曲线右焦点,求双曲线的方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.

    (1)求双曲线C的方程;

    (2)若Q是双曲线线C上的任一点,F1F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;

    (3)设直线y = mx + 1与双曲线C的左支交于AB两点,另一直线l经过M (–2,0)及AB的中点,求直线ly轴上的截距b的取值范围.

查看答案和解析>>

同步练习册答案