解:(Ⅰ)用(a,b)(a,b分别表示第一、二次取到球的编号)表示先后两次取球构成的基本事件,
则基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12个…(3分)
设“第一次球的编号为偶数且两个球的编号之和能被3整除”为事件A,
则事件A包含的基本事件有:(2,1),(2,4),(4,2)共有3个; …(5分)
∴P(A)=
=
…(6分)
(Ⅱ)基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),
(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个…(8分)
设“直线ax+by+1=0与圆x
2+y
2=
有公共点”为事件B,
由题意知:
,即a
2+b
2≥16,
则事件B包含的基本事件有:(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有8个; …(11分)
∴P(B)=
…(12分)
分析:(Ⅰ)用(a,b)表示先后两次取球构成的基本事件,列举可得共12个,而要求的事件包含的基本事件有有3个,由古典概型的公式可得答案;
(Ⅱ)同理列出总的基本事件有共16个,由直线和圆的位置关系可得满足的条件为a
2+b
2≥16,所包含的基本事件共有8个,代入公式可得.
点评:本题考查列举法计算基本事件数即事件发生的概率,准确列举是解决问题的关键,属基础题.