【题目】数列{an}的前n项和为,且满足,,,.
(1)求数列{an}的通项公式;
(2)记,.
①求Tn;
②求证:.
【答案】(1)(2)①②证明见解析;
【解析】
(1)利用公式得到,再迭代一次得到数列{an}为等差数列,计算得到答案.
(2),利用裂项相消法得到,转化为,构造函数,计算函数单调性得到证明.
(1)因为,所以n=2时,S1=1,即a1=1.
因为n≥2时,,即,时也适合该式.
所以n≥2时,,,
两式相减得,则,
两式相减得,n≥2.
所以,n≥2,所以.
所以数列{an}为等差数列,因为a1=1,a2=2,所以公差d=1,所以.
(2)①因为an=n,所以,
所以,
②要证,只要证,
只要证,即证.
设,x>1,令,x>1,则,
设,,则,函数单调递增,
故,故x>1时,,故在恒成立.
所以在上单调递增,
因为,所以,所以所证不等式成立.
科目:高中数学 来源: 题型:
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.
(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;
(2)如图是按该20名学生的评分绘制的频率分布直方图,求的值并估计这20名学生评分的平均值(同一组中的数据用该组区间中点值作为代表);
(3)求该20名学生评分的中位数,并将评分超过和不超过的学生数填入下面的列联表:
超过 | 不超过 | |
男生 | ||
女生 |
根据列联表,能否有的把握认为男生和女生的评分有差异?
附:,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | ||
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布,其中近似为这1000个产品的质量指标值的平均数,近似为这1000个产品的质量指标值的方差(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在之内,就认为机器处于正常状态,否则,认为机器处于故障状态.
(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:
29 45 55 63 67 73 78 87 93 113
请判断该机器是否出现故障?
(2)若机器出现故障,有2种检修方案可供选择:
方案一:加急检修,检修公司会在当天排除故障,费用为700元;
方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元.
现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?
附:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,大摆锤是一种大型的游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常,大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.大摆锤的运行可以使置身其上的游客惊心动魄.今年元旦,小明去某游乐园玩“大摆锤”,他坐在点处,“大摆锤”启动后,主轴在平面内绕点左右摆动,平面与水平地面垂直,摆动的过程中,点在平面内绕点作圆周运动,并且始终保持,,已知,在“大摆锤”启动后,下列个结论中正确的是______(请填上所有正确结论的序号).
①点在某个定球面上运动;
②线段在水平地面上的正投影的长度为定值;
③直线与平面所成角的正弦值的最大值为;
④直线与平面所成角的正弦值的最大值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱中,,,点为的中点,.
(1)求证:平面;
(2)条件①:直线与平面所成的角为;
条件②:为锐角,三棱锥的体积为.
在以上两个条件中任选一个,补充在下面的问题中,并解决该问题:
若平面平面,______,求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥底面的四个顶点,,,在球的同一个大圆上,点在球面上,且已知.
(1)求球的表面积;
(2)设为中点,求异面直线与所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com