精英家教网 > 高中数学 > 题目详情

【题目】0123456789组成没有重复数字的五位数,且是奇数,其中恰有两个数字是偶数,则这样的五位数的个数为( ).

A.7200B.6480C.4320D.5040

【答案】B

【解析】

以偶数数字取不取0,分两类讨论,每类用先取后排的策略即可

第一类,偶数数字取0

先从13579中取3个奇数,从2468中取1个偶数,

中取法,然后将个位数排一个奇数,十位、百位、千位

选一个出来排0,剩下3个数字全排列,即有种排法

所以本类满足条件的五位数有

第二类,偶数数字不取0

先从13579中取3个奇数,从2468中取2个偶数,

中取法,然后将个位数排一个奇数,剩下4个数字全排列,

即有种排法

所以本类满足条件的五位数有

综上:这样的五位数个数为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数有(

1)在空间直角坐标系中,点关于平面的对称点为,则点关于原点的对称点的坐标为.

2.

319084187的最大公约数是53.

4)用秦九韶算法计算多项式,当时的值.

5)古代五行学说认为:物质分金,木,土,水,火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,设事件A表示排列中属性相克的两种物质不相邻,则事件A的概率为.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予50分的平时分,获得“不合格”评价的学生给予30分的平时分,另外还将进行一次测验.学生将以“平时分×40%+测验分×80%”作为“最终得分”,“最终得分”不少于60分者获得学分.

该校高二(1)班选修《心理健康》课的学生的平时份及测验分结果如下:

测验分

[3040

[4050

[5060

[6070

[7080

[8090

[90100]

平时分50分人数

0

3

4

4

2

平时分30分人数

1

0

0

1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?

选修人数

测验分

达到60

测验分

未达到60

合计

平时分50

平时分30

合计

2)若从这些学生中随机抽取1人,求该生获得学分的概率.

附:,其中

0.1

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当a时,试判断函数f(x)的单调性;

2)设g(x),若g(x)有唯一零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.

(1)求袋中白球的个数;

(2)用表示甲,乙最终得分差的绝对值,求随机变量的概率分布列及数学期望E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调查机构在某设置过街天桥的路口随机调查了110人准备过马路的交通参与者对跨越护栏和走过街天桥的看法,得到如下列联表:

合计

走过街天桥

40

20

60

跨越护栏

20

30

50

合计

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

则可以得到正确的结论是( )

A.有99%以上的把握认为“选择过马路的方式与性别有关”

B.有99%以上的把握认为“选择过马路的方式与性别无关”

C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”

D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议,为调查该校学生每周平均体育运动时间的情况,从高一高二(非毕业年级)与高三(毕业年级)共三个年级学生中按照的比例分层抽样,收集位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.(已知高一年级共有名学生)

1)据图估计该校学生每周平均体育运动时间,并估计高一年级每周平均体育运动时间不足小时的人数;

2)规定每周平均体育运动时间不少于小时记为“优秀”,否则为“非优秀”,在样本数据中,有位高三学生的每周平均体育运动时间不少于小时,请完成下列列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间是否优秀与毕业年级有关”?

非毕业年级

毕业年级

合计

优秀

非优秀

合计

附:.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

)求椭圆和双曲线的标准方程;

)设直线的斜率分别为,证明

)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案