精英家教网 > 高中数学 > 题目详情

【题目】在下图所示的几何体中,底面为正方形,平面,且为线段的中点.

(1)证明:平面

(2)求四棱锥的体积.

【答案】(1)详见解析;(2)2.

【解析】试题分析: (1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,其中线线垂直的寻找与论证从两个方面研究,一是利用立体中线面垂直关系转化,二是利用平几知识计算,本题先取中点,转化证明平面,由平面可得,再由正方形性质可得.(2)求四棱锥体积,关键找高,而高的寻找往往利用线面垂直关系得到:平面,因此是四棱锥的高,再代入体积公式即可.

试题解析:(1)连接,令交于点,连接,因为点是中点,

.

又∵

,∴四边形为平行四边形,

又∵平面平面,∴.

∵四边形为正方形,∴.

平面

平面.

(2)∵平面平面

∴平面平面

又∵

平面,∴是四棱锥的高,

∴四棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明:<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是).

(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);

(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.

①请根据上述表格中的统计数据填写下面列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?

②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.

参考公式:,其中.

参考数据:

0.05

0.40

0.25

0.15

0.10

0.05

0.025

0.010

3.841

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)当时,若对任意互不相等的实数,都有成立,求实数的取值范围;

3)判断函数上的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使成立,则称为函数的不动点,已知.

(1)若有两个不动点为,求函数的零点;

(2)若时,函数没有不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行的“国际马拉松赛”,举办单位在活动推介晚会上进行嘉宾现场抽奖活动,抽奖盒中装有6个大小相同的小球,分别印有“快乐马拉松”和“美丽绿城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球(取出后不再放回),若抽到的两个球都印有“快乐马拉松”标志即可获奖.并停止取球;否则继续抽取,第一次取球就抽中获一等奖,第二次取球抽中获二等奖,第三次取球抽中获三等奖,没有抽中不获奖.活动开始后,一位参赛者问:“盒中有几个印有‘快乐马拉松’的小球?”主持人说:“我只知道第一次从盒中同时抽两球,不都是‘美丽绿城行’标志的概率是

(1)求盒中印有“快乐马拉松”小球的个数;

(2)若用表示这位参加者抽取的次数,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数在区间上单调递增,求的取值范围;

(Ⅱ)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;

(Ⅱ)根据表中数据完成下面茎叶图;

)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.

查看答案和解析>>

同步练习册答案