精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)分别由表给出.若f[g(x)]=1 则x的取值集合为(  )
x 1 2 3
f(x) 1 3 1
x 1 2 3
g(x) 3 2 1
分析:先根据表格可得g(x),再根据表格可求得x.
解答:解:由f[g(x)]=1及表格可得,g(x)=1或g(x)=3,
由g(x)=1得x=3,由g(x)=3得x=1,
所以x的取值集合为{1,3},
故选C.
点评:本题考查函数求值,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案