【题目】已知平面内两点M(4,﹣2),N(2,4).
(1)求MN的垂直平分线方程;
(2)直线l经过点A(3,0),且与直线MN平行,求直线l的方程.
【答案】(1)x﹣3y+1=0;(2)3x+y﹣9=0.
【解析】
(1)由中点坐标公式求得MN的中点坐标,再由两点求斜率公式求得MN所在直线的斜率,进一步得到MN的垂直平分线的斜率,再由直线方程点斜式得答案;
(2)直接由直线方程点斜式可得过点A(3,0),且与直线MN平行的直线l的方程.
解:(1)∵M(4,﹣2),N(2,4),
∴M,N的中点坐标为(3,1),又,
∴MN的垂直平分线的斜率为,则MN的垂直平分线方程为y﹣1(x﹣2),
即x﹣3y+1=0;
(2)∵直线l与直线MN平行,∴直线l的斜率为﹣3,
又直线l经过点A(3,0),∴直线l的方程为y=﹣3(x﹣3),
即3x+y﹣9=0.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为.
(Ⅰ)求曲线的参数方程;
(Ⅱ)过原点且关于轴对称的两条直线与分别交曲线于、和、,且点在第一象限,当四边形的周长最大时,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似的满足函数关系.
(1)求函数的表达式;
(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)
表中,.
(1)根据散点图判断,与哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若该产品的日销售量(件)与时间的函数关系为(),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)
附:对于一组数据,,,,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.
成绩优秀 | 成绩不够优秀 | 总计 | |
选修生涯规划课 | 15 | 10 | 25 |
不选修生涯规划课 | 6 | 19 | 25 |
总计 | 21 | 29 | 50 |
(Ⅰ)根据列联表运用独立性检验的思想方法能否有的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;
(Ⅱ)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数的分布列和数学期望(将频率当作概率计算).
参考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
参考公式,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
已知曲线C:(t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作△ABC,AB=AC=4,点B(-1,3),点C(4,-2),且其“欧拉线”与圆M:相切,则下列结论正确的是( )
A.圆M上点到直线的最小距离为2
B.圆M上点到直线的最大距离为3
C.若点(x,y)在圆M上,则的最小值是
D.圆与圆M有公共点,则a的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应德智体美劳的教育方针,唐徕回中高一年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下:
每分钟跳绳个数 | 185以上 | ||||
得分 | 16 | 17 | 18 | 19 | 20 |
年级组为了了解学生的体质,随机抽取了100名学生,统计了他的跳绳个数,并绘制了如下样本频率直方图:
(1)现从这100名学生中,任意抽取2人,求两人得分之和小于35分的概率(结果用最简分数表示);
(2)若该校高二年级2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间的中点值为代表).利用所得到的正态分布模型解决以下问题:
①估计每分钟跳绳164个以上的人数(四舍五入到整数)
②若在全年级所有学生中随机抽取3人,记每分钟跳绳在179个以上的人数为,求的分布列和数学期望与方差.
(若随机变量服从正态分布则,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com