精英家教网 > 高中数学 > 题目详情

【题目】已知平面内两点M4,﹣2),N24).

1)求MN的垂直平分线方程;

2)直线l经过点A30),且与直线MN平行,求直线l的方程.

【答案】1x3y+10;(23x+y90

【解析】

(1)由中点坐标公式求得MN的中点坐标,再由两点求斜率公式求得MN所在直线的斜率,进一步得到MN的垂直平分线的斜率,再由直线方程点斜式得答案;

(2)直接由直线方程点斜式可得过点A(30),且与直线MN平行的直线l的方程.

解:(1)∵M(4,﹣2),N(24),

MN的中点坐标为(31),又

MN的垂直平分线的斜率为,则MN的垂直平分线方程为y1(x2),

x3y+10

(2)∵直线l与直线MN平行,∴直线l的斜率为﹣3

又直线l经过点A(30),∴直线l的方程为y=﹣3(x3),

3x+y90

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似的满足函数关系.

(1)求函数的表达式;

(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)

表中.

(1)根据散点图判断,哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立关于的回归方程;

(3)若该产品的日销售量(件)与时间的函数关系为),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北省2019年公布了新的高考方案,实行“3+1+2”模式.某学生按方案要求任意选择,则该生选择考历史和化学的概率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

(Ⅰ)根据列联表运用独立性检验的思想方法能否有的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

(Ⅱ)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数的分布列和数学期望(将频率当作概率计算).

参考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程。

已知曲线Ct为参数), C为参数)。

1)化CC的方程为普通方程,并说明它们分别表示什么曲线;

2)若C上的点P对应的参数为QC上的动点,求中点到直线

t为参数)距离的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的欧拉线”.在平面直角坐标系中作△ABCABAC4,点B(13),点C(4,-2),且其欧拉线与圆M相切,则下列结论正确的是(

A.M上点到直线的最小距离为2

B.M上点到直线的最大距离为3

C.若点(xy)在圆M上,则的最小值是

D.与圆M有公共点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应德智体美劳的教育方针,唐徕回中高一年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下:

每分钟跳绳个数

185以上

得分

16

17

18

19

20

年级组为了了解学生的体质,随机抽取了100名学生,统计了他的跳绳个数,并绘制了如下样本频率直方图:

1)现从这100名学生中,任意抽取2人,求两人得分之和小于35分的概率(结果用最简分数表示);

2)若该校高二年级2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中为样本平均数的估计值(同一组中数据以这组数据所在区间的中点值为代表).利用所得到的正态分布模型解决以下问题:

①估计每分钟跳绳164个以上的人数(四舍五入到整数)

②若在全年级所有学生中随机抽取3人,记每分钟跳绳在179个以上的人数为,求的分布列和数学期望与方差.

(若随机变量服从正态分布

查看答案和解析>>

同步练习册答案