精英家教网 > 高中数学 > 题目详情
9.已知f($\sqrt{x}$+2)=x2-4$\sqrt{x}$,求f(x)

分析 利用换元法直接求解函数的解析式即可.

解答 解:令t=$\sqrt{x}$+2≥2,可得$\sqrt{x}$=t-2,
f($\sqrt{x}$+2)=x2-4$\sqrt{x}$,
f(t)=(t-2)2-4(t-2)=t2-8t+12.
函数的解析式为:f(x)=x2-8x+12,x≥2.

点评 本题考查函数的解析式的求法,换元法的应用,考查计算能力,注意函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某工厂要制造A型电子装置45台,B型电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B两型电子装置外壳3个或5个,乙种每张面积3m2,可做A、B两型电子装置外壳各6个,请用平面区域表示甲、乙两种薄钢板张数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>$\frac{3}{{e}^{x}}$+1的解集为{x|x>0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的函数f(x)满足:f(1)=$\frac{5}{2}$,且对于任意实数x,y,总有f(x)f(y)=f(x+y)+f(x-y)成立.
(1)求f(0)的值,并证明f(x)为偶函数;
(2)若数列{an}满足an=2f(n+1)-f(n)(n=1,2,3,…),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求:(1)y=$\frac{4sinx+3}{sinx+2}$(2)y=$\frac{3sinx-3}{2cosx+10}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知M={(x,y)|$\left\{\begin{array}{l}{x=sinθ}\\{y=2cosθ}\end{array}\right.$,θ∈(0,2π)},Nr={(x,y)|x2+y2≤r2,r<0},则满足M⊆Nr的r最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设x,y,z≥0,且x+y+z=1,求证:$\sqrt{16-48yz-15{x}^{2}}$+$\sqrt{16-48zx-15{y}^{2}}$+$\sqrt{16-48xy-15{z}^{2}}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.比较log2425与log2526的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解不等式$\frac{{x}^{2}-2x-1}{x-1}$≥0.

查看答案和解析>>

同步练习册答案