精英家教网 > 高中数学 > 题目详情
如图,四面体ABCD中,0是BD的中点,CA=CB=CD=BD=a,AB=AD=
2
2
a

(1)求证:平面AOC⊥平面BCD;
(2)求二面角O-AC-D的余弦值.
分析:(1)先利用等腰三角形的性质证明AO⊥BD,CO⊥BD,利用线面垂直的判定,证明BD⊥平面AOC,从而可得平面AOC⊥平面BCD;
(2)作OG⊥AC于点G,连接DG,由三垂线定理可知∠OGD为所求二面角的平面角,从而可求二面角的平面角的余弦值.
解答:(1)证明:∵BO=DO,AB=AD
∴AO⊥BD
∵BO=DO,BC=CD,∴CO⊥BD
∵AO∩CO=O,∴BD⊥平面AOC.
∵BD?平面BCD,
∴平面AOC⊥平面BCD.
(2)解:∵DO⊥平面AOC,
作OG⊥AC于点G,连接DG,由三垂线定理可知∠OGD为所求二面角的平面角.
在△DOG中,由已知可得DO=
1
2
a
,OG=
3
4
a

∴DG=
OD2+OG2
=
7
4
a

∴cos∠OGD=
OG
DG
=
3
4
a
7
4
a
=
21
7

∴所求二面角的平面角的余弦值为
21
7
点评:本题考查线面垂直、考查面面垂直,考查面面角,掌握线面、面面垂直的判定方法,作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,
AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(II)求二面角A-BC-D的大小;
(III)求O点到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求 异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD的各个面都是直角三角形,已知AB⊥BC,BC⊥CD,AB=a,BC=a,CD=c.
(1)若AC⊥CD,求证:AB⊥BD;
(2)求四面体ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O、E分别是BD、BC的中点,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求证:面ABD⊥面AOC;
(2)求异面直线AE与CD所成角的大小.

查看答案和解析>>

同步练习册答案