精英家教网 > 高中数学 > 题目详情

所有棱长都为2的正四面体的体积等于________.


分析:由已知中正四面体的所有棱长都为2,我们可分别求出棱锥的底面面积和高,代入棱锥体积公式,即可得到答案.
解答:当棱长为2时
正四面体的底面积S==
正四面体的高h==
故正四面体的体积V=•S•h==
故答案为:
点评:本题考查的知识点是棱锥的体积公式,由于正四面体在考试中比较容易考查,故熟练掌握棱长为a的正四面体的底面积、高、体积、表面积、内切球半径、外切球半径…的公式,是提高解答正四面体问题速度和精度的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求证:面ACD′⊥面BDD′;
(3)求四棱锥B′-ABCD与D′-ABCD的公共部分体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求面AB'D'与面ABD所成锐二面角的余弦值;
(3)求四棱锥B'-ABCD与D'-ABCD的公共部分体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)如图,所有棱长都为2的正三棱柱,四边形是菱形,其中的中点。

(1) 求证:

(2)求证:面

(3)求四棱锥的公共部分体积.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市高考数学模拟试卷(1)(解析版) 题型:解答题

如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求证:面ACD′⊥面BDD′;
(3)求四棱锥B′-ABCD与D′-ABCD的公共部分体积.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市东海高级中学高考数学三模试卷(解析版) 题型:解答题

如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求证:面ACD′⊥面BDD′;
(3)求四棱锥B′-ABCD与D′-ABCD的公共部分体积.

查看答案和解析>>

同步练习册答案