精英家教网 > 高中数学 > 题目详情
13.判断下列函数的奇偶性.
(1)f(x)=cos($\frac{π}{2}$+2x)cos(π+x).
(2)f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
(3)f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$.

分析 ①f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,因此,f(-x)=-f(x),所以f(x)为奇函数;
②f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,因此,f(-x)=f(x),所以f(x)为偶函数;
③f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,因此,f(-x)=-f(x),所以f(x)为奇函数.

解答 解:直接根据函数奇偶性的定义,判断如下:
①∵f(x)=(-sin2x)•(-cosx)=sin2x•cosx,
∴f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,
因此,f(-x)=-f(x),所以f(x)为奇函数;
②∵f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
∴f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,
因此,f(-x)=f(x),所以f(x)为偶函数;
③∵f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$,
∴f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,
因此,f(-x)=-f(x),所以f(x)为奇函数.

点评 本题主要考查了函数奇偶性的判断,涉及三角函数的诱导公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数解析式为y=4sin($\frac{π}{8}$x-$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设△ABC的面积S=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{4}$,角A,B,C所对的边为a,b,c且c=$\sqrt{2}$a.
(1)求角C的大小;
(2)若△ABC内一点P满足AP=AC,BP=CP,求∠PAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y=$\frac{1}{4}$x2的焦点为F,点P为抛物线C上一个动点,过点P且与抛物线C相切的直线记为l.
(1)求F的坐标;
(2)当点P在何处时,点F到直线L的距离最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.说明函数y=cos(2x-$\frac{π}{4}$)的图象,由y=sin2x的图象怎样变化而来.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.Sn=lnx+lnx3+lnx5+…+lnx2n-1=n2lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow{b}$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$\overrightarrow{e}$是非零向量,若$\overrightarrow{a}$+$\overrightarrow{b}$=2$\overrightarrow{e}$,2$\overrightarrow{a}$-$\overrightarrow{b}$=-3$\overrightarrow{e}$,向量$\overrightarrow{a}$与$\overrightarrow{b}$是否平行?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数完全相同的是(  )
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

同步练习册答案