精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C的离心率为,且椭圆C过点.

1)求椭圆C的标准方程:

2)若直线l与椭圆C相交于AB两点(AB不是左右顶点),且以为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

【答案】12)证明见解析;定点坐标为

【解析】

(1) 由题意结合离心率首先确定的关系,然后结合椭圆经过的点即可确定椭圆方程;

(2) 把直线的方程与椭圆的方程联立可得根与系数的关系,再利用以为直径的圆过椭圆的右顶点D,可得,即可得出的关系,从而得出答案.

解:(1)由题意设椭圆的标准方程为),,椭圆C过点,,解得

椭圆的标准方程为.

2)设,直线代入椭圆方程得

,即,则

,.

因为以为直径的圆过椭圆的右焦点

,即

.

解得,且均满足

时,l的方程为,直线过定点,与已知矛盾;

时,l的方程为,直线过定点.

所以,直线l过定点,定点坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)讨论函数的单调性;

2)设函数,若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】炎炎夏季,水蜜桃成为备受大家欢迎的一种水果,某果园的水蜜桃质量分布如图所示.

Ⅰ)求m的值;

Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望

Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,tN),前30天价格为g(t)=+20(1≤t≤30,tN),后20天价格为g(t)=30(31≤t≤50,tN),求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数局部对称点”.

1,其中,试判断是否有局部对称点?若有,请求出该点;若没有,请说明理由;

2)若函数在区间内有局部对称点,求实数m的取值范围;

3)若函数R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若给定非零实数对于任意实数总存在非零常数使得恒成立则称函数上的类周期函数若函数上的22类周期函数,且当又函数.使成立则实数的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合

1)若,求的取值范围.

2)若,且为整数集合),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案