精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2+log2x,x∈[1,8],求函数y=[f(x)]2+f(x2)的最大值及此时x的值.
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:由x2∈[1,8],可推出log2x的范围,化简函数y,运用配方即可得到最值.
解答: 解:∵x∈[1,8],且x2∈[1,8],
∴x∈[1,2
2
],
∴0≤t=log2x≤
3
2

又∵[f(x)]2+f(x2)=(2+log2x)2+2+2log2x
=(2+t)2+2+2t=t2+6t+6=(t+3)2-3,
则当t=
3
2
,即x=2
2
,y取最大值,且为
69
4
点评:本题实质考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,点P到两点F1(0,-
2
),F2(0,
3
)
的距离之和等于4,动点P的轨迹为曲线.
(1)求曲线C的方程;
(2)设直线y=kx+l与曲线C交于A,B两点,当OA⊥OB时,(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-2)6的展开式中x2的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,n>0,且2m+3n=5,则
2
m
+
3
n
的最小值是(  )
A、25
B、
5
2
C、4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序框图中,若输出S=
3
2
+
3
,则p的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+a-10,若f(x)为奇函数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
a
b
满足(
a
+
b
)(2
a
-
b
)=0
,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既是偶函数又在(0,+∞)上是增函数的是(  )
A、y=x3
B、y=|x|+1
C、y=-x2+1
D、y=2x+1

查看答案和解析>>

同步练习册答案