【题目】设函数
(I)讨论的单调性;
(II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.
【答案】:(I)的定义域为
令
当故上单调递增.
当的两根都小于0,在上,,故上单调递增.
当的两根为,
当时,;当时,;当时,,故分别在上单调递增,在上单调递减.
(II)由(I)知,.
因为,所以
又由(I)知,.于是
若存在,使得则.即.亦即
再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得
【解析】
【试题分析】(1)先对函数求导,再运用导数与函数的单调性的关系分析讨论函数的符号,进而运用分类整合思想对实数进行分三类进行讨论并判定其单调性,求出单调区间;(2)先假设满足题设条件的参数存在,再借助题设条件,推得,即,亦即
进而转化为判定函数在上是单调递增的问题,然后借助导数与函数单调性的关系运用反证法进行分析推证,从而作出判断:
解:(Ⅰ)定义域为,
,
令,
①当时,,,故在上单调递增,
②当时,,的两根都小于零,在上,,
故在上单调递增,
③当时,,的两根为,
当时,;当时,;当时,;
故分别在上单调递增,在上单调递减.
(Ⅱ)由(Ⅰ)知,,
因为.
所以,
又由(1)知,,于是,
若存在,使得,则,即,
亦即()
再由(Ⅰ)知,函数在上单调递增,
而,所以,这与()式矛盾,
故不存在,使得.
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2ax2+2bx,若存在实数x0∈(0,t),使得对任意不为零的实数a,b均有f(x0)=a+b成立,则t的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根、(),称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)已知为给定实数,求的表达式;
(3)把函数,的最大值记作,最小值记作,研究函数,的单调性,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)判断并证明的单调性;
(Ⅱ)是否存在实数,使函数为奇函数?证明你的结论;
(Ⅲ)在(Ⅱ)的条件下,当时,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com