精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数 ,若函数g(x)=f(x)﹣a(x+1)恰有2个零点,则实数a的取值范围是

【答案】 ∪{0}
【解析】解:数形结合,由直线y=a(x+1)与曲线y=f(x)的位置关系如图:x≤﹣1时,y=x2+x,y′=2x+1, =﹣1,

函数g(x)=f(x)﹣a(x+1)恰有2个零点,可得a≤﹣1;

当x∈(﹣1,0)时,y=﹣x2﹣x,y′=﹣2x﹣1, =2﹣1=1;

当x>0时,y=ln(x+1),过(﹣1,0)点与曲线的切点为:(m,ln(m+1)),

y′=

可得: = ,可得m=e﹣1,

切线的斜率为: .函数g(x)=f(x)﹣a(x+1)恰有2个零点,可得a

a=0时,函数的零点也是2个.

综上可得当 ∪{0}时有两个交点,即函数y=g(x)恰有两个零点.

所以答案是: ∪{0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列{an}的前n项和为Sn , S2n﹣12+S2n2=4(a2n﹣2),则2a1+a100=(
A.﹣8
B.﹣6
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,x∈R,ω>0.
(1)求函数f(x)的值域;
(2)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为 ,求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a,b,c,下列命题正确的是( )
A.若a>b,则ac2>bc2
B.若a<b<0,则a2>ab>b2
C.若a<b<0,则
D.若a<b<0,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为S2 , 折叠后重合部分△ACP的面积为S1
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函数f(x)的单调区间;
(2)设g(x)=f'(x),其中f'(x)为函数f(x)的导函数.判断g(x)在定义域内是否为单调函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0). (Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若 恒成立,求a的取值范围;
(Ⅲ)证明:总存在x0 , 使得当x∈(x0 , +∞),恒有f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数).
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)设曲线C经过伸缩变换 得到曲线C',若点P(1,0),直线l与C'交与A,B,求|PA||PB|,|PA|+|PB|.

查看答案和解析>>

同步练习册答案