精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)当m=0时,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值为-1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

分析 (1)利用向量数量积的公式化简函数f(x)即可.
(2)求出函数f(x)的表达式,利用换元法结合一元二次函数的最值性质进行讨论求解即可.
(3)由g(x)=0得到方程的根,利用三角函数的性质进行求解即可.

解答 解:(1)$\overrightarrow{a}$•$\overrightarrow{b}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)•(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)=cos$\frac{3x}{2}$cos$\frac{x}{2}$-sin$\frac{3x}{2}$sin$\frac{x}{2}$=cos($\frac{3x}{2}$+$\frac{x}{2}$)=cos2x,
当m=0时,f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1=cos2x+1,
则f($\frac{π}{6}$)=cos(2×$\frac{π}{6}$)+1=cos$\frac{π}{3}$+1=$\frac{1}{2}+1=\frac{3}{2}$;
(2)∵x∈[-$\frac{π}{3}$,$\frac{π}{4}$],
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{2+2cos2x}$=$\sqrt{4co{s}^{2}x}$=2cosx,
则f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1=cos2x-2mcosx+1=2cos2x-2mcosx,
令t=cosx,则$\frac{1}{2}$≤t≤1,
则y=2t2-2mt,对称轴t=$\frac{m}{2}$,
①当$\frac{m}{2}$<$\frac{1}{2}$,即m<1时,
当t=$\frac{1}{2}$时,函数取得最小值此时最小值y=$\frac{1}{2}$-m=-1,得m=$\frac{3}{2}$(舍),
②当$\frac{1}{2}$≤$\frac{m}{2}$≤1,即m<1时,
当t=$\frac{m}{2}$时,函数取得最小值此时最小值y=-$\frac{{m}^{2}}{2}$=-1,得m=$\sqrt{2}$,
③当$\frac{m}{2}$>1,即m>2时,
当t=1时,函数取得最小值此时最小值y=2-2m=-1,得m=$\frac{3}{2}$(舍),
综上若f(x)的最小值为-1,则实数m=$\sqrt{2}$.
(3)令g(x)=2cos2x-2mcosx+$\frac{24}{49}$m2=0,得cosx=$\frac{3m}{7}$或$\frac{4m}{7}$,
∴方程cosx=$\frac{3m}{7}$或$\frac{4m}{7}$在x∈[-$\frac{π}{3}$,$\frac{π}{4}$]上有四个不同的实根,
则$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}≤\frac{3m}{7}<1}\\{\frac{\sqrt{2}}{2}≤\frac{4m}{7}<1}\\{\frac{3m}{7}≠\frac{4m}{7}}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{7\sqrt{2}}{6}≤m<\frac{7}{3}}\\{\frac{7\sqrt{2}}{8}≤m<\frac{7}{4}}\\{m≠0}\end{array}\right.$,则$\frac{7\sqrt{2}}{6}$≤m<$\frac{7}{4}$,
即实数m的取值范围是$\frac{7\sqrt{2}}{6}$≤m<$\frac{7}{4}$.

点评 本题主要考三角函数的性质,函数的零点以及复合函数的应用,综合性较强,运算量较大,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.直线x-2y-3=0在y轴上的截距是(  )
A.3B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如表:
评估得分[60,70)[70,80)[80,90)[90,100]
评分类型DCBA
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$(k∈R).
(1)若$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求实数k的值;
(2)若向量$\overrightarrow{c}$=(1,-1),且$\overrightarrow{m}$与向量k$\overrightarrow{b}$+$\overrightarrow{c}$平行,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设两条直线x+y-2=0,3x-y-2=0的交点为M,若点M在圆(x-m)2+y2=5内,则实数m的取值范围为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为M,延长FM交双曲线右支于点P,若M为FP的中点,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=(  )
A.B.{0}C.{2}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P(0,-1)是椭圆C的下顶点,F是椭圆C的右焦点,直线PF与椭圆C的另一个交点为Q,满足$\overrightarrow{PF}=7\overrightarrow{FQ}$.
(1)求椭圆C的标准方程;
(2)如图,过左顶点A作斜率为k(k>0)的直线l交椭圆C于点D,交y轴于点B.已知M为AD的中点,是否存在定点N,使得对于任意的k(k>0)都有OM⊥BN,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案