精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点离心率为. 

(1)求椭圆的标准方程;

(2)过坐标原点作直线交椭圆两点,过点的平行线交椭圆两点.

①是否存在常数满足?若存在,求出这个常数;若不存在,请说明理由;

②若的面积为的面积为,求的最大值.

【答案】(1);(2) ①,②

【解析】

(1)利用椭圆的性质代入数据,计算a,b,即可(2)①分别设出AB和OP的方程,结合椭圆方程,用斜率表示,计算即可②将这两个面积和转化成三角形OBA的面积,然后结合直线与圆锥曲线方程,计算最值,即可。

(1)得到,结合得到

将点代入椭圆方程中,解得

所以椭圆方程为:

(2)

①设OP直线方程为结合椭圆方程代入

得到

而结合焦半径公式

AB的直线方程为代入椭圆方程,计算出

结合代入

可得

②分析图可知,所求面积之和实则为,故

设直线AB的方程为,则

其中d为圆心O到直线AB的距离,则

将直线方程代入椭圆方程,得到

解得,代入中,得到

,令,得到

则当时,该函数取到最大值,代入中,得到

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下四个结论:

(1)若函数的定义域为,则函数的定义域是

(2)函数(其中,且)的图象过定点

(3)当时,幂函数的图象是一条直线;

(4)若,则的取值范围是.

其中所有正确结论的序号是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四种说法:①函数的单调递增区间是;②函数的值域相同;③函数均是奇函数;④若函数上有零点,则实数的取值范围是.其中正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)已知不过原点的直线与圆相切,且在轴,轴上的截距相等,求直线的方程;

(2)求经过原点且被圆截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面ABC为正三角形,底面ABC,点在线段上,平面平面

1)请指出点的位置,并给出证明;

2)若,求与平面ABE夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某地区乡居民人民币储蓄存款(年底余额如下表

年份

2012

2013

2014

2015

2016

2017

时间代号

1

2

3

4

5

6

储蓄存款(千亿元)

3.5

5

6

7

8

9.5

(1)求关于的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).

(2)在含有一个解释变量的线性模型中,恰好等于相关系数的平方,当时,认为线性回归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到).

附:

, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.

1)求的值;

2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;

3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点,记直线的斜率为.

(Ⅰ)求的值;

(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

同步练习册答案