精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为 (  )
A.$\frac{9}{8}$B.2-$\frac{\sqrt{3}}{2}$C.$\frac{25}{16}$D.$\sqrt{3}$-$\frac{1}{2}$

分析 画出函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$的图象,结合对数函数的图象和性质,可得x1•x2=1,x1+x2>$2\sqrt{{x}_{1}{x}_{2}}$=2,(4-x3)•(4-x4)=1,且x1+x2+x3+x4=8,则不等式kx3x4+x12+x22≥k+11恒成立,可化为:k≥$\frac{11-({x}_{1}^{2}+{x}_{2}^{2})}{{x}_{3}•{x}_{4}-1}$恒成立,求出$\frac{11-({x}_{1}^{2}+{x}_{2}^{2})}{{x}_{3}•{x}_{4}-1}$的最大值,可得k的范围,进而得到实数k的最小值.

解答 解:函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$的图象如下图所示:

当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,
|lnx1|=|lnx2|,即x1•x2=1,x1+x2>$2\sqrt{{x}_{1}{x}_{2}}$=2,
|ln(4-x3)|=|(4-x4)|,即(4-x3)•(4-x4)=1,
且x1+x2+x3+x4=8,
若不等式kx3x4+x12+x22≥k+11恒成立,
则k≥$\frac{11-({x}_{1}^{2}+{x}_{2}^{2})}{{x}_{3}•{x}_{4}-1}$恒成立,
由$\frac{11-({x}_{1}^{2}+{x}_{2}^{2})}{{x}_{3}•{x}_{4}-1}$=$\frac{11-{({x}_{1}^{\;}+{x}_{2}^{\;})}^{2}+2{x}_{1}{x}_{2}}{4({x}_{3}+{x}_{4})-16}$=$\frac{13-{({x}_{1}^{\;}+{x}_{2}^{\;})}^{2}}{16-4({x}_{1}+{x}_{2})}$=$\frac{1}{4}$[(x1+x2)-4$+\frac{3}{{(x}_{1}+{x}_{2})-4}$+8]≤2-$\frac{\sqrt{3}}{2}$
故k≥2-$\frac{\sqrt{3}}{2}$,
故实数k的最小值为2-$\frac{\sqrt{3}}{2}$,
故选:B

点评 本题考查的知识点是分段函数的应用,对数函数的图象和性质,函数的最值,函数恒成立问题,综合性强,转化困难,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.f(x)=$\left\{\begin{array}{l}{{2}^{-x}}&{x≤1}\\{lo{g}_{9}x}&{x>1}\end{array}\right.$,则f(x)$>\frac{1}{2}$的解集是(-∞,1)∪(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为AA1的中点.
(1)求证:AB1⊥平面PBC;
(2)在BC上找一点Q,使得PQ∥平面CDD1C1,并求三棱锥P-QBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是R上的偶函数,且在[0,+∞)上是增函数,若f(-3)=0,则f(x)<0的解集是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若(3x-1)55=a0+a1x+…+a55x55,求|a1|+|a2|+…+|a55|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,$\frac{π}{3}<C<\frac{π}{2}$,$\frac{b}{a-b}=\frac{sin2C}{sinA-sin2C}$,a=3,$sinB=\frac{{\sqrt{11}}}{6}$,则b等于(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正四棱锥的底面边长为$\sqrt{2}$,高为1,则这个正四棱锥的外接球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为(  )
A.14B.16C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知四面体ABCD各棱长都等于1,点E,F分别是AB,CD的中点,则异面直线AF与CE所成角的余弦值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案