精英家教网 > 高中数学 > 题目详情

已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.

(1)  (2)取到最大值

解析试题分析:(1)因为函数上为增函数,所以
上恒成立。
①当时,上恒成立,所以上为增
函数,故符合题意。
②当时,由函数的定义域可知,必须有上恒成立,
故只能,所以上恒成立。 .
令函数,其对称轴为,因为
所以,要使上恒成立,只要即可,即,所以,因为,所以
综上所述,的取值范围为               
(2)当,方程可化为。问题转
化为上有解,即求函数的值域。令函数   
,所以当时,,函数上为增函数,当时,,函数上为减函数,因此。而,所以,因此当时,取到最大值.
考点:函数在某点取得极值的条件;利用导数研究函数的单调性.
点评:本题主要考查了利用函数的导数求解函数极值的应用,及利用函数的导数研究函数的单调性及函数的最值的求解,解答本题要求考生具备较强的逻辑推理与运算的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数且是减函数,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 )
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程恰有两个不相等实根的概率;
(2)若从区间中任取一个数,从区间中任取一个数,求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当a=l时,求函数的极值;
(2)当a2时,讨论函数的单调性;
(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的值域为
(1)求的值;
(2)若关于的函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案