精英家教网 > 高中数学 > 题目详情

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

【答案】(1)700人;(2) ①男生抽取4人,女生抽取1人.②

【解析】

1100名学生中锻炼达人的人数为10人,由此能求出7000名学生中锻炼达人的人数.

2)①100名学生中的锻炼达人10人,其中男生8人,女生2人.从10人中按性别分层抽取5人参加体育活动,能求出男生,女生各抽取多少人.

②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男45人中随机抽取2人,利用列举法能求出抽取的2人中男生和女生各1人的概率.

1)由表可知,100名学生中锻炼达人的人数为10人,将频率视为概率,我校7000名学生中锻炼达人的人数为(人)

2)①由(1)知100名学生中的锻炼达人10人,其中男生8人,女生2人.

10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人.

②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,则5人中随机抽取2人的所有结果有:男12,男13,男1 4,男1女,男23,男24,男2女,男34,男3女,男4女.共有10种结果,且每种结果发生的可能性相等.记抽取的2人中男生和女生各1为事件A,则事件A包含的结果有男1女,男2女,男3女,男4女,共4个,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某公园内有一个以O为圆心,半径为5百米,圆心角为的扇形人工湖OABOMON是分别由OAOB延伸而成的两条观光道.为便于游客观光,公园的主管部门准备在公园内增建三条观光道,其中一条与相切点F,且与OMON分别相交于CD,另两条是分别和湖岸OAOB垂直的FGFH (垂足均不与O重合).

(1) 求新增观光道FGFH长度之和的最大值;

(2) 在观光道ON段上距离O为15百米的E处的道路两侧各有一个大型娱乐场,为了不影响娱乐场平时的正常开放,要求新增观光道CD的延长线不能进入以E为圆心,2.5百米为半径的圆形E的区域内.则点D应选择在OE之间的什么位置?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在竖直坐标平面中,从坐标原点出发以同一初速度和不同的发射角(即发射方向与轴正向之间的夹角)射出的质点(不计质点的大小),在重力(设重力加速度为)的作用下运动轨迹是抛物线,所有这些抛物线组成一个抛物线族(即抛物线的集合).若两条抛物线在同一个交点处的切线互相垂直,则称这个交点为正交点.证明:此抛物线族的所有正交点的集合是一段椭圆弧,并求出这个椭圆弧的方程(包括变量的取值范围),再画出它的草图.注. 抛物线在其上的点处的切线的斜率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,各棱长均为4, 分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,点C为半圆上一点,平面ABCDPA中点,.

1)求证:

2)求直线BD与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则满足的实数的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1≤x≤3},B={x|x>2}.

Ⅰ)分别求A∩B,(RBA;

Ⅱ)已知集合C={x|1<x<a},若CA,求实数a的取值集合

查看答案和解析>>

同步练习册答案