精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.
(Ⅰ);(Ⅱ)
设M(x,y)是曲线C上任一点,根据,用M的坐标表示出P的坐标,然后根据点P在椭圆上,可求出点M的轨迹方程.
(II) 当直线l的斜率不存在时,显然不满足条件,所以设直线l的方程为y=kx-2,它与椭圆方程联立消y后得到关于x的一元二次方程,然后因为,所以四边形OANB为平行四边形,
假设存在矩形OANB,则,即
从而根据韦达定理可得到关于k的方程,求出k值,再验证是否满足判别式大于零.
(Ⅰ)设M(x,y)是曲线C上任一点,因为PM⊥x轴,,所以点P的坐标为(x,3y)  点P在椭圆上,所以
因此曲线C的方程是                               …………5分
(Ⅱ)当直线l的斜率不存在时,显然不满足条件
所以设直线l的方程为y=kx-2与椭圆交于A(x1,y1),B(x2,y2),经N点平行x轴的直线方程为


,       …………8分
因为,所以四边形OANB为平行四边形,
假设存在矩形OANB,则

所以
,       …………10分
设N(x0,y0),由,得
,即N点在直线
所以存在四边形OANB为矩形,直线l的方程为       …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

(Ⅰ)设为点P的横坐标,证明
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1M的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的方程为( )
A.B.
C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线
则曲线C的方程为(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆经过点(0,1),离心率
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点A关于x轴的对称点为
①试建立 的面积关于m的函数关系;
②某校高二(1)班数学兴趣小组通过试验操作初步推断;“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知圆方程为:.
(Ⅰ)直线过点,且与圆交于两点,若,求直线的方程;
(Ⅱ)过圆上一动点作平行于轴的直线,设轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的离心率,过两点的直线到原点的距离是
(1)求椭圆的方程 ; 
(2)已知直线交椭圆于不同的两点,且都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是椭圆上的动点,F1F2分别为其左、右焦点,O是坐标原点,则的取值范围是            

查看答案和解析>>

同步练习册答案