精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.
(1)见解析(2)
(1)连接AC1A1C于点F,则FAC1的中点.
DAB的中点,连接DF,则BC1DF.因为DF?平面A1CDBC1?平面A1CD,所以BC1∥平面A1CD.
(2)由ACCBAB得,ACBC.以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
=(1,1,0),=(0,2,1),=(2,0,2).
n=(x1y1z1)是平面A1CD的法向量,
可取n=(1,-1,-1).
同理,设m=(x2y2z2)是平面A1CE的法向量,
可取m=(2,1,-2).
从而cos〈nm〉=,故sin〈nm〉=
即二面角DA1CE的正弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.

(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,底面为菱形,平面分别是的中点.

(1)证明:平面
(2)取,若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

向量=(2,4,x),=(2,y,2),若||=6,且,则x+y的值为( )
A.-3B.1C.-3或1D.3或1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCDA1B1C1D1中,棱长为aMN分别为A1BAC上的点,A1MAN,则MN与平面BB1C1C的位置关系是    (  ).
A.相交 B.平行C.垂直 D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,O为坐标原点,设向量,其中=(3,1),=(1,3).若=λ+μ,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是(  )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间直角坐标系中,一定点到三个坐标轴的距离都是,则该点的坐标
可能为                                                        (    )
A.B.C.D.

查看答案和解析>>

同步练习册答案