精英家教网 > 高中数学 > 题目详情
设椭圆C:
x2
4
+
y2
2
=1的左焦点为F,左准线为l,一条直线过点F与椭圆C交于A,B两点,若直线l上存在点P,使△ABP为等边三角形,求直线AB的方程.
分析:设过点F的弦AB的中点为M,分别过A,B,M向准线l作垂线,垂足分别为A1,B1,M1,则|MM1|=
1
2
(|AA1|+|BB1|)=
1
2
|AF|
e
+
|BF|
e
)=
1
2
|AB|,又因为△PAB为等边三角形?|PM|=
3
2
|AB|,所以
|MM1|
|MP|
=
6
3
,cos∠PMM1=
6
3
,由此能求出AB的方程.
解答:解:如图,∵F(-
2
,0),l:x=-2
2
,离心率e=
2
2
.设过点F的弦AB的中点为M,分别过A,B,M向准线l作垂线,垂足分别为A1,B1,M1,则|MM1|=
1
2
(|AA1|+|BB1|)=
1
2
|AF|
e
+
|BF|
e
)=
1
2
|AB|,又因为△PAB为等边三角形?|PM|=
3
2
|AB|,所以
|MM1|
|MP|
=
6
3



即cos∠PMM1=
6
3

∴sin∠PMM1=
3
3
,tam∠PMM1=
2
2

又kPM=±tam∠PMM1
2
2

∵AB⊥PM,∴kAB=-
1
kPM
2

又AB过点F(-
2
,0),所以AB的方程为y=±
2
(x+
2
).
即直线AB的方程为:
2
x-y+2=0
,或
2
x+y+2=0
点评:本题考查圆锥曲线的基本几何量的求法,如焦点、准线、离心率等.考查直线与圆锥曲线的基本问题的研究方法,如弦长计算、弦中点坐标求法等.考查圆锥曲线的定义的灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,如图,已知椭圆C:
x24
+y2
=1的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N;
(I)设直线AP、BP的斜率分别为k1,k2求证:k1•k2为定值;
(Ⅱ)求线段MN长的最小值;
(Ⅲ)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知椭圆C:
x2
4
+y2=1
,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
OP
=m
OA
+n
OB
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)已知椭圆C:
x2
4
+
y2
3
=1
的右焦点为F,左顶点为A,点P为曲线D上的动点,以PF为直径的圆恒与y轴相切.
(Ⅰ)求曲线D的方程;
(Ⅱ)设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为APM的重心.若存在,求出点P的坐标;若不存在,说明理由.(若三角形ABC的三点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则其重心G的坐标为(
x1+x2+x3
3
y1+y2+y3
3
))

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图1,已知定点F1(-2,0)、F2(2,0),动点N满足|
ON
|=1(O为坐标原点),
F1M
=2
NM
MP
MF2
(λ∈R),
F1M
PN
=0,求点P的轨迹方程.
精英家教网
(2)如图2,已知椭圆C:
x2
4
+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N,
(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;
(ⅱ)当点P运动时,以MN为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:郑州二模 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
的右焦点为F,左顶点为A,点P为曲线D上的动点,以PF为直径的圆恒与y轴相切.
(Ⅰ)求曲线D的方程;
(Ⅱ)设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为APM的重心.若存在,求出点P的坐标;若不存在,说明理由.(若三角形ABC的三点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则其重心G的坐标为(
x1+x2+x3
3
y1+y2+y3
3
))

查看答案和解析>>

同步练习册答案