精英家教网 > 高中数学 > 题目详情

已知数学公式
(1)求函数f(x)的定义域;
(2)判断并用定义证明函数f(x)的单调性.

解:(1)要使函数有意义,则,即≥0,
解得0<x≤1,则所求的定义域为(0,1].
(2)f(x)在(0,1)内单调递减,证明如下:
设0<x1<x2≤1

即f(x2)<f(x1),∴函数f(x)在(0,1]上单调递减.
分析:(1)由题意列出,通分变形后求出不等式得解集,是所求的定义域;
(2)先根据解析式判断出是减函数,再用定义法证明函数在定义域内是减函数.
点评:本题考查了函数的定义域的求法,即利用偶次根号下被开方数大于等于零,列出不等式进行化简求解,证明函数的单调性必须用定义法去证.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省吉安二中高三(上)第二轮周考数学试卷(理科)(解析版) 题型:解答题

已知
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省襄阳市襄樊四中高考适应性考试数学试卷(文科)(解析版) 题型:解答题

已知
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省部分重点中学高三第二次联考数学试卷(理科)(解析版) 题型:解答题

已知
(1)求函数f(x)值域;
(2)若对任意的a∈R,函数y=f(x)在(a,a+π]上的图象与y=1有且仅有两个不同的交点,试确定ω的值(不必证明)并写出该函数在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源:2015届广东省连州市高一10月月考数学试卷(解析版) 题型:解答题

(14分)已知

(1)求函数f(x)的表达式?

(2)求函数f(x)的定义域?

 

查看答案和解析>>

科目:高中数学 来源:2012--2013学年河南省高一上学期第一次考试数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知

(1)求函数f(x)的表达式?

(2)求函数f(x)的定义域?

 

查看答案和解析>>

同步练习册答案