精英家教网 > 高中数学 > 题目详情

.如图,四边形为矩形,平面,平面于点,且点上.

(1)求证:;(2)求四棱锥的体积;

(3)设点在线段上,且,试在线段上确定一点,使得平面.

 

【答案】

(1)见解析;

(2)

(3)点就是点

【解析】本试题主要是考查了线线垂直的证明以及棱锥的体积公式,以及线面平行的证明的综合运用。

(1)要证明线线垂直,先利用线面垂直的性质定理得到结论。

(2)利用转换顶点的思想求解三棱锥的体积的运算。

(3)根据线面平行的判定定理得到证明,关键是线线平行的证明.

解:(1)因为平面,所以

因为平面于点…………………………………3分

因为,所以,则

因为,所以,则………………………5分

(2)作,因为面平面,所以

因为,所以…………………………7分

 …………………………………9分

(3)因为平面于点,所以的中点

的中点,连接…………………………12分

所以

因为,所以∥面,则点就是点…14分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届安徽合肥一中高二上学期第一次月考文科数学试卷(解析版) 题型:解答题

如图,四边形为矩形,平面上的点,且平面.

(1)求三棱锥的体积;

(2)设在线段上,且满足,试在线段上确定一点,使得平面.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高三第一学期8月摸底考试数学试卷(解析版) 题型:解答题

如图,四边形为矩形,平面⊥平面上的一点,且⊥平面

(1)求证:

(2)求证:∥平面

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新课标高三二轮复习综合验收(6)理科数学试卷 题型:解答题

(本题满分12分如图,四边形为矩形,且上的动点。

(1) 当的中点时,求证:

(2) 设,在线段上存在这样的点E,使得二面角的平面角大小为。试确定点E的位置。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年广东省高一下学期第一次月考数学试卷 题型:解答题

(本小题满分14分)如图,四边形为矩形,平面,平面于点,且点上,点是线段的中点。

   (1)求证:

   (2)求三棱锥的体积;

   (3)试在线段上确定一点,使得平面

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三下学期数学单元测试5-文科 题型:填空题

 如图,四边形为矩形,,以为圆心,1为半径作四分之一个圆弧,在圆弧上任取一点,则直线与线段有公共点的概率是    

 

 

查看答案和解析>>

同步练习册答案