精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,参数方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数)对应的曲线为线段.

分析 由sin2θ+cos2θ=1,得到该参数方程的普通方程为x+y=1,x∈[0,1],y∈[0,1].

解答 解:∵参数方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数),
∴由sin2θ+cos2θ=1,
得到该参数方程的普通方程为x+y=1,x∈[0,1],y∈[0,1].
∴参数方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数)对应的曲线为线段.
故答案为:线段.

点评 本题考查曲线形状的判断,是基础题,解题时要认真审题,注意sin2θ+cos2θ=1的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知P1(x1,y1),P2(x2,y2)是斜率为k的直线上的两点,
求证:|P1P2|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用“五点法”画出函数y=2sin$\frac{1}{2}$x的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果一个数的2倍减去1等于5,则这个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率;
(2)若M是圆C上任一点,求|MQ|的最大值和最小值;
(3)若点N(a,b)满足关系式a2+b2-4a-14b+45=0,求$\frac{b-3}{a+3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设O点为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,且以线段PQ为直径的圆过坐标原点O.
(1)求m的值;
(2)求直线PQ的方程.
(3)M为x轴上的一点,当△MPQ为钝角三角形时,求M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x,y的方程组$\left\{{\begin{array}{l}{3ax+2y-1=0}\\{x+ay+3=0}\end{array}}\right.$的增广矩阵是$(\begin{array}{cc}3a&2\\ 1&a\end{array}\right.\begin{array}{c}1\\-3\end{array})\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x∈[0,π),则sinx<$\frac{\sqrt{2}}{2}$的x取值范围为[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,已知a1>0,前n项和为Sn,且有S3=S11,则$\frac{a_1}{d}$=$-\frac{13}{2}$,当Sn取得最大值时,n=7.

查看答案和解析>>

同步练习册答案