精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.
证明:(1)取PD的中点F,连接EF,FM
由条件知:FM平行且等于DC的一半,EB平行且等于DC的一半
∴FMEB,且FM=EB
则四边形EFMB是平行四边形
则BMEF
∵BM?平面PDE,EF?平面PDE
∴BM平面PDE;
(2)当N为BC的中点时,BC⊥平面PHN,理由如下:
由题意得,HN为直角梯形BCDE的中位线
∴HN⊥BC
∵PB=PC
∴PN⊥BC
又∵HN∩PN=N
∴BC⊥平面PHN,
(3)由(2)中结论可得,BC⊥PH,
又∵PH⊥DE
故PH⊥底面BCDE
则PH⊥HN,即△PHN为直角三角形
∵AB=2AD=4,E为AB的中点
∴BC=2,HN=3,PH=
2
,则PN=
11

∴△PBC的面积S=
1
2
•BC•PN=
11

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体ABCD-A1B1C1D1中E、F分别在A1D、AC上,且A1E=
2
3
A1D,AF=
1
3
AC,则(  )
A.EF至多与A1D、AC之一垂直
B.EF是A1D、AC的公垂线
C.EF与BD1相交
D.EF与BD1异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD和正△PAB所在平面互相垂直,其中ABDC,AD=CD=
1
2
AB
,且O为AB中点.
(I)求证:BC平面POD;
(II)求证:AC⊥PD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN平面A′ACC′;
(Ⅱ)求三棱锥A′-MNC的体积.
(椎体体积公式V=
1
3
Sh,其中S为地面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.
(Ⅰ)证明:EF平面PCD;
(Ⅱ)若PA=AB,求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,M,N分别是对角线AC和BF上的点,且AM=FN=a(0<a<
2
)

(1)求证:MN平面BCE;
(2)求MN的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求证:BC⊥AA1
(2)若M,N是棱BC上的两个三等分点,求证:A1N平面AB1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D为C1B的中点,P为AB边上的动点.
(Ⅰ)当点P为AB的中点时,证明DP平面ACC1A1
(Ⅱ)若AP=3PB,求三棱锥B-CDP的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α平面β的一个充分条件是(  )
A.存在一条直线a,aα,aβ
B.存在一条直线a,a?α,aβ
C.存在两条平行直线a,b,a?α,b?β,aβ,bα
D.存在两条异面直线a,b,a?α,b?β,aβ,bα

查看答案和解析>>

同步练习册答案