精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;

(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;

(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

 

【答案】

(Ⅰ);(Ⅱ)不论点E在何位置,都有BD⊥AE;(Ⅲ)

【解析】

试题分析:(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P-ABCD的底面是边长为1的正方形,

侧棱PC⊥底面ABCD,且PC="2."

----------------------------2分

(Ⅱ) 不论点E在PC上何位置,都有BD⊥AE---------------------------------------3分

证明如下:连结AC,∵ABCD是正方形

∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC-----------5分

又∵∴BD⊥平面PAC 

∵不论点E在何位置,都有AE平面PAC 

∴不论点E在何位置,都有BD⊥AE ----------------------------------------------7分

(Ⅲ) 解法一:在平面DAE内过点D作DG⊥AE于G,连结BG

∵CD="CB,EC=EC," ∴

∴ED="EB," ∵AD=AB ∴△EDA≌△EBA

∴BG⊥EA ∴为二面角D-EA-B的平面角--------------------------10分

∵BC⊥DE,   AD∥BC ∴AD⊥DE

在Rt△ADE中==BG

在△DGB中,由余弦定理得

=-----------------------12分

[解法二:以点C为坐标原点,CD所在的直线为x轴建立空间直角坐标系如图示:

,从

设平面ADE和平面ABE的法向量分别为

可得:

同理得:。令,则

------10分

设二面角D-AE-B的平面角为,则 ∴------12分

考点:锥体的体积公式;线面垂直的判定定理;线面垂直的性质定理;二面角。

点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案