精英家教网 > 高中数学 > 题目详情
1.已知函数y=ax3+bx2,当x=1时,函数有极大值3
(1)求a,b的值
(2)求函数y的极小值.

分析 (1)求函数的导数,结合函数的极大值建立方程关系进行求解即可.
(2)根据函数极值的定义进行求解即可.

解答 解:(1)函数的导数f′(x)=3ax2+2bx,
∵当x=1时,函数有极大值3
∴$\left\{\begin{array}{l}{f(1)=3}\\{f′(1)=0}\end{array}\right.$,得$\left\{\begin{array}{l}{a+b=3}\\{3a+2b=0}\end{array}\right.$.得$\left\{\begin{array}{l}{a=-6}\\{b=9}\end{array}\right.$,
经检验x=1是函数的极大值,
故a=-6,b=9.
(2)当a=-6,b=9时,f(x)=-6x3+9x2
f′(x)=-18x2+18x,
由f′(x)>0得0<x<1,
由f′(x)<0得x>1或x<0,
即当x=1时函数取得极大值3,
当x=0时,函数取得极小值f(0)=0.

点评 本题主要考查函数极值的求解和应用,根据函数极值和函数导数之间的关系,建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

分别是椭圆的左右焦点,上一点,且轴垂直,直线的另一个交点为

(1)若直线的斜率为,求的离心率;

(2)若直线轴上的截距为2,且,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某程序框如图所示,该程序运行后输出的k的值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

若当时,不等式恒成立,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

按如下图所示的流程图,输出的结果为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$,(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆M的方程为ρ2-6ρsinθ=-8.
(1)求圆M的直角坐标方程;
(2)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的参数方程是$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B的极坐标分别为A(2,π),$B(2,\frac{4π}{3})$.
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)设M为曲线C上的动点,求点M到直线AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,正视图与俯视图为全等的等腰三角形,侧视图由半圆和等腰直角三角形组成,则该几何体的体积为$\frac{π+2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,BB1=2,∠ABB1=60°.
(1)证明:AB⊥B1C;
(2)若B1C=2,求三棱锥B1-CC1A的体积.

查看答案和解析>>

同步练习册答案