精英家教网 > 高中数学 > 题目详情
(2012•东城区二模)将容量为n的样本中的数据分成6组,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n的值为(  )
分析:根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.
解答:解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,
则2x+3x+4x+6x+4x+x=1,
解得x=
1
20

所以前三组数据的频率分别是
2
20
3
20
4
20

故前三组数据的频数之和等于
2n
20
+
3n
20
+
4n
20
=27,
解得n=60.
故答案为60.
点评:小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区二模)定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:An=
F(n,2)
F(2,n)
(n∈N+),若对任意正整数n,都有an≥ak(k∈N*成立,则ak的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)在R上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=x
1
2
,给出下列命题:
①若x>1,则f(x)>1;
②若0<x1<x2,则f(x2)-f(x1)>x2-x1
③若0<x1<x2,则x2f(x1)<x1f(x2);
④若0<x1<x2,则
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=(a+
1
a
)lnx+
1
x
-x(a>1).
(l)试讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1)),Q(x2,f (x2 )),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1+x2
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是(  )

查看答案和解析>>

同步练习册答案