精英家教网 > 高中数学 > 题目详情
3、点P为△ABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则点O是△ABC的
外心
(选 填 内心、外心、重心、垂心)
分析:由题设条件知,三条斜线在底面的射影是相等的,即此点到底面三角形三个顶点的距离是相等的,由引可以得出此点应该是三角形的外心.
解答:解:由题意点P为△ABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则它们在底面上的射影也相等,由此知点O到△ABC的三个顶点的距离是相等的,由外心的定义知,点O是三角形的外心
故答案为:外心.
点评:本题考查三角形五心,求解本题的关键是能够根据题设条件得出PA,PB,PC在底面上的射影相等,以及熟练掌握三角形个心的定义,本题是一个判断形题,是对基本概念的考查题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,则边AC上的高h的最大值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:江苏省南通市通州区2012届高三4月查漏补缺专项检测数学试题 题型:022

已知△ABC中,∠B=60°,O为△ABC的外心,若点P在△ABC所在的平面上,,且·=8,则边AC上的高h的最大值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,数学公式=数学公式+数学公式+数学公式,且数学公式数学公式=8,则边AC上的高h的最大值为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省常州中学高三最后冲刺综合练习数学试卷6(文科)(解析版) 题型:解答题

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,=++,且=8,则边AC上的高h的最大值为   

查看答案和解析>>

同步练习册答案