精英家教网 > 高中数学 > 题目详情

【题目】每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.

(1)求某两人选择同一套餐的概率;
(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.

【答案】
(1)解:由题意可得某两人选择同一套餐的概率为:


(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.

综上可得X的分布列为:

X

400

500

600

700

800

1000

P

X的数学期望


【解析】(1)利用古典概型的概率公式,即可算出两人选择同一套餐的概率;(2)易知X的可能取值为400,500,600,700,800,1000,求出相应的概率,列出分布列,根据公式求出期望。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在[80,90)的人数为12人.

(Ⅰ)求此班级人数;
(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)记甲乙二人排在前三位的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1,

(1)求证:PA⊥平面PBC;
(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记Y为所组成的三位数各位数字之和.
(1)求Y是奇数的概率;
(2)求Y的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判.每局比赛结束时,负的一方在下局当裁判,假设每局比赛中,甲胜乙的概率为 ,甲胜丙、乙胜丙的概率都是 ,各局比赛的结果相互独立,第一局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:“存在x0∈[1,+∞),使得(log23) ≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(﹣∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,平面PAC⊥底面ABCD,BC=CD= AC=2,∠ACB=∠ACD=

(1)证明:AP⊥BD;
(2)若AP= ,AP与BC所成角的余弦值为 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,M是AD上一点.

(1)求证:AB⊥PM;
(2)若N是PB的中点,且AN∥平面PCM,求 的值.

查看答案和解析>>

同步练习册答案