精英家教网 > 高中数学 > 题目详情

已知函数 

(1)若f(x)的定义域是R,求实数a的取值范围及f(x)的值域;

(2)若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.

见解析。


解析:

解:(1)因为f(x)的定义域为R,所以ax2+2x+1>0对一切xR成立.

由此得解得a>1.    又因为ax2+2x+1=a(x+)+1->0,

所以f(x)=lg(a x2+2x+1) lg(1-),所以实数a的取值范围是(1,+ ) ,

f(x)的值域是

( 2 ) 因为f(x)的值域是R,所以u=ax2+2x+1的值域(0, +).

a=0时,u=2x+1的值域为R(0, +);

a≠0时,u=ax2+2x+1的值域(0, +)等价于

解之得0<a1.  所以实数a的取值范围是[0.1]    当a=0时,由2x+1>0得x>-,

f (x)的定义域是(-,+);  当0<a1时,由ax2+2x+1>0

解得  

f (x)的定义域是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数.

(1)若点()为函数的图象的公共点,试求实数的值;

(2)设是函数的图象的一条对称轴,求的值;

(3)求函数的值域。

查看答案和解析>>

科目:高中数学 来源:2014届河南安阳一中高二第二次阶段考试理科数学试卷(解析版) 题型:解答题

(12分)已知函数

 (1)若当的表达式;

(2)求实数上是单调函数.

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省高三第一次学情摸底考试数学卷 题型:解答题

(本题满分13 分)

    已知函数

   (1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

   (2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

   (3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷一 题型:解答题

(15 分)

已知函数

(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届贵州省高一上学期期末考试数学 题型:解答题

、(本小题满分12分)已知函数

(1)若,求的零点;

(2)若函数在区间上有两个不同的零点,求的取值范围。

 

 

 

查看答案和解析>>

同步练习册答案