A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
分析 利用双曲线的离心率求出渐近线方程,利用三角形的面积,结合离心率即可得到方程组求出a即可.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,O为坐标原点,
以OF为直径圆与双曲线C的一条渐近线相交于O,A两点,
所以FA⊥OA,则FA=b,OA=a,
△AOF的面积为1,
可得$\frac{1}{2}$ab=1,
双曲线的离心率e=$\frac{\sqrt{5}}{2}$,可得$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=$\frac{5}{4}$,
即$\frac{b}{a}$=$\frac{1}{2}$,
解得b=1,a=2.
故选:C.
点评 本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | $f(x)=sin(\frac{π}{3}x)$ | B. | $f(x)=sin(\frac{π}{2}x)$ | C. | $f(x)=cos(\frac{π}{3}x)$ | D. | $f(x)=cos(\frac{π}{2}x)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-∞,-\frac{1}{e}})$ | B. | (-∞,-e) | C. | (e,+∞) | D. | $({\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3.71元 | B. | 3.97元 | C. | 4.24元 | D. | 4.77元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com