精英家教网 > 高中数学 > 题目详情
已知Sn是数列{an}的前n项和,若a1=1,a2=3,an+2=2an+1-an+2(n=1,2,…),则Sn=
n(n-1)(n+1)
3
+n
n(n-1)(n+1)
3
+n
分析:由an+2=2an+1-an+2(n=1,2,…),变形为an+2-an+1=an+1-an+2,令bn=an+1-an,则bn+1=bn+2,利用等差数列的通项公式即可得出bn.可得an+1-an=2n,利用“累加求和”公式an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出an.进而利用12+22+…+n2=
n(n+1)(2n+1)
6
及其等差数列的前n项和公式即可得出Sn
解答:解:∵an+2=2an+1-an+2(n=1,2,…),∴an+2-an+1=an+1-an+2,
令bn=an+1-an,则bn+1=bn+2,
∴数列{bn}是以b1=a2-a1=3-1=2为首项,2为公差的等差数列.
∴bn=2+(n-1)×2=2n.
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=
n(n-1)
2
+1

=n2-n+1.
∴Sn=(12+22+…+n2)-(1+2+…+n)+n
=
n(n+1)(2n+1)
6
-
n(n+1)
2
+n
=
n(n-1)(n+1)
3
+n

故答案为
n(n-1)(n+1)
3
+n
点评:正确变形转化为等差数列、“累加求和”公式及其利用12+22+…+n2=
n(n+1)(2n+1)
6
、等差数列的前n项和公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(Ⅰ)求Sn
(Ⅱ)若数列{bn}满足b1=2,bn+1=2an+bn,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科题)
(1)在等比数列{an }中,a5=162,公比q=3,前n项和Sn=242,求首项a1和项数n的值.
(2)已知Sn是数列{an}的前n项和,Sn=2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,且有Sn=n2+n,则数列{an}的通项an=
2n
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,Sn=2n-1,则a10=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)已知Sn是数列{an}前n项和,a1=1,an+1=an+2(n∈N*),则
lim
n→∞
nan
Sn
=
2
2

查看答案和解析>>

同步练习册答案