精英家教网 > 高中数学 > 题目详情

【题目】【2015高考广东,文19】设数列的前项和为.已知,且当

时,

(1)求的值;

(2)证明:为等比数列;

(3)求数列的通项公式.

【答案】(1);(2)证明见解析;(3)

【解析】

试题分析:(1)令可得的值;(2)先将)转化为,再利用等比数列的定义可证是等比数列;(3)先由(2)可得数列的通项公式,再将数列的通项公式转化为数列是等差数列,进而可得数列的通项公式.

试题解析:(1)当时,,即,解得:

(2)因为),所以),即),因为,所以,因为,所以数列是以为首项,公比为的等比数列

(3由(2)知:数列是以为首项,公比为的等比数列,所以

,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数处的切线互相垂直,求的值;

2)若函数在定义域内不单调,求的取值范围;

(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 满足关系(其中是常数).

)如果 ,求函数的值域;

)如果 ,且对任意,存在 ,使得恒成立,求的最小值;

)如果,求函数的最小正周期(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法:

①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;

②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p

④回归直线一定过样本点的中心( ).

其中正确的说法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|y=},B={x|x2-x-6=0}.

(1)若a=-1,求A∩B;

(2)若()∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,问如何设计才能使公园占地面积最大,求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若函数处的切线方程为,求的值;

(II)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若x>1,求x+的最小值;

(2) 若x>0,y>0,且2x+8y-xy=0,求xy的最小值.

查看答案和解析>>

同步练习册答案