精英家教网 > 高中数学 > 题目详情
9.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线准线的距离为6.

分析 先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离.

解答 解:抛物线y2=8x的准线为x=-2,
∵点P到y轴的距离是4,
∴P到准线的距离是4+2=6,
故答案为:6

点评 本题主要考查了抛物线的方程与性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求证:DM∥平面PCB;
(Ⅲ)求PB与平面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)的定义域为:{x|x≠0},且2f(x)+f($\frac{1}{x}$)=x,试判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在D上的函数,若存在区间[m,n]⊆D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3-$\frac{4}{x}$不可能是k型函数;  
②若函数f(x)=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函数,则n-m的最大值为$\frac{2\sqrt{3}}{3}$;  
③若函数f(x)=-$\frac{1}{2}$x2+x是3型函数,则m=-4,n=0.
其中正确说法个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一条光线从点P(5,3)射出,与x轴相交于点Q(2,0),经x轴反射,则反射光线所在直线的方程为(  )
A.x+y-2=0B.x-y-2=0C.x-y+2=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等差数列{an}中,若a3-a2=-2,a7=-2,则a9=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ax3-bx2,若曲线y=f(x)在点(1,f(1))处的切线方程为y=-x+1,则当$-\frac{1}{2}≤x≤\frac{3}{2}$时,f(x)的取值范围是(  )
A.$[0,\frac{4}{27}]$B.$[0,\frac{3}{8}]$C.[-$\frac{9}{8}$,$\frac{4}{27}$]D.$[-\frac{9}{8},\frac{3}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.cos140°+2sin130°sin10°=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如表是A市住宅楼房屋销售价格y和房屋面积x的有关数据:
房屋面积(m211511080135105
销售价格(万元)24.821.618.429.222
(1)设线性回归方程为$\widehat{y}$=bx+a,已计算得b=0.2(保留一位小数),$\overline{y}$=23.2,求$\overline{x}$及a;
(2)估计面积为120m2的房屋销售价格.

查看答案和解析>>

同步练习册答案