精英家教网 > 高中数学 > 题目详情
已知椭圆C=1(ab>0)经过点A,且离心率e.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于MN两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
设椭圆)经过点,其离心率与双曲线的离心率互为倒数.
(Ⅰ)求椭圆的方程;(注意椭圆的焦点在轴上哦!)
(Ⅱ) 动直线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.
(1)求椭圆C的方程;  
(2) 过点任作一直线交椭圆C于
点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程,若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是椭圆上的点,F1、F2是两个焦点,则|PF1|·|PF2|的最大值与最小值之差是_____

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足为坐标原点),,若椭圆的离心率等于
(1)求直线AB的方程;  (2)若的面积等于,求椭圆的方程;
(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P为椭圆=1上任意一点,F1F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标, 若不存在,试说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案