【题目】设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
【答案】(1)-3<<-(2)函数f(x)在区间(0,2)内至少有一个零点.(3)见解析
【解析】
(1)由已知得f(1)=a+b+c=-,∴3a+2b+2c=0,
又3a>2c>2b,∴a>0,b<0.
又2c=-3a-2b,∴3a>-3a-2b>2b,
∵a>0,∴-3<<-.
(2)由已知得f(0)=c,f(2)=4a+2b+c=a-c,
①当c>0时,f(0)=c>0,f(1)=-<0,
∴函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,f(1)=-<0,f(2)=a-c>0,
∴函数f(x)在区间(1,2)内至少有一个零点.
综上所述,函数f(x)在区间(0,2)内至少有一个零点.
(3)∵x1,x2是函数f(x)的两个零点,
∴x1+x2=-,x1x2==--,
∴|x1-x2|==,
∵-3<<-,∴≤|x1-x2|<.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为 .
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一种大型商品,A,B两地都有出售,且价格相同,某地居民从两地之一购得商品后,运回的费用是:每单位距离A地的运费是B地运费的3倍.已知A,B两地相距10 km,顾客选A或B地购买这件商品的标准是:包括运费和价格的总费用较低.求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 | 低谷时间段用电价格表 | ||
高峰月用 电量(单 位:千瓦时) | 高峰电价 (单位:元/ 千瓦时) | 低谷月用 电量(单位: 千瓦时) | 低谷电价 (单位:元/ 千瓦时) |
50及以下 的部分 | 0.568 | 50及以下 的部分 | 0.288 |
超过 50 至 200 的部分 | 0.598 | 超过 50 至 200 的部分 | 0.318 |
超过200 的部分 | 0.668 | 超过 200 的部分 | 0.388 |
若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实数根.
(1)求函数f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为G()(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本 = 固定成本 + 生产成本);销售收入R()(万元)满足:,假定该产品产销平衡,那么根据上述统计规律:
(Ⅰ)要使工厂有赢利,产量应控制在什么范围?
(Ⅱ)工厂生产多少台产品时,可使赢利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点是抛物线上一定点,直线的斜率互为相反数,且与抛物线另交于两个不同的点.
(1)求点到其准线的距离;(2)求证:直线的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com