精英家教网 > 高中数学 > 题目详情

【题目】选修44:坐标系与参数方程

在直角坐标系中,已知直线l1 ),抛物线C t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l1 和抛物线C的极坐标方程;

(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

【答案】(1);(2)16.

【解析】试题分析:1根据过原点的直线的极坐标方程的定义可得,先将抛物线化为直角坐标方程,在化为极坐标方程;2联立直线与抛物线的方程可得,同理可得,由结合基本不等式可得结果.

试题解析:1)可知是过原点且倾斜角为的直线,其极坐标方程为

抛物线的普通方程为

其极坐标方程为

化简得

2的方程为,由得点

依题意得直线的方程为,同理可得点

,(当且仅当时,等号成立)

的面积的最小值为16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为

(Ⅰ)求函数的单调区间;

(Ⅱ)若为整数,当时, 恒成立,求的最大值(其中的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)为偶函数,求b的值;
(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是一个几何体的直观图和三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).

(1)求四棱锥P-ABCD的体积

(2)若G为BC上的动点,求证AEPG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 为棱上一动点, 为底面上一动点, 的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是(

A. 棱柱 B. 棱台 C. 棱锥 D. 球的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下图中,四边形 ABCD是等腰梯形, OQ分别为线段ABCD的中点,OQEF的交点为POP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结ADBC,得一几何体如图所示.

(Ⅰ)证明:平面ABCD平面ABFE

(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与直线相切于点

1)求圆方程;

2)是否存在过点的直线与圆交于两点,且的面积是为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料、五合板;生产每个书橱需要方木枓、五合板.出售一张书桌可获利润元,出售一个书橱可获利润元,怎样安排生产可使所得利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),当x>1时,有f(x)>0.
(1)求f(1),判定并证明f(x)的单调性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.

查看答案和解析>>

同步练习册答案