精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=|ex-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$).

分析 求出函数f(x)的表达式,利用数形结合,结合导数的几何意义进行求解即可.

解答 解:当x≥2a时,f(x)=|ex-e2a|=ex-e2a,此时为增函数,
当x<2a时,f(x)=|ex-e2a|=-ex+e2a,此时为减函数,
即当x=2a时,函数取得最小值0,设两个切点为M(x1,f(x1)),N((x2,f(x2)),
由图象知,当两个切线垂直时,必有,x1<2a<x2
即-1<2a<3-a,得-$\frac{1}{2}$<a<1,
∵k1k2=f′(x1)f′(x2)=${e}^{{x}_{1}}$$•(-{e}^{{x}_{2}})$=-${e}^{{x}_{1}+{x}_{2}}$=-1,
则${e}^{{x}_{1}+{x}_{2}}$=1,即x1+x2=0,
∵-1<x1<0,∴0<x2<1,且x2>2a,
∴2a<1,解得a<$\frac{1}{2}$,
综上-$\frac{1}{2}$<a<$\frac{1}{2}$,
故答案为:(-$\frac{1}{2}$,$\frac{1}{2}$)

点评 本题主要考查导数的几何意义的应用,利用数形结合以及直线垂直的性质是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.则通项公式an=13-3n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)={(\frac{1}{4})^x}+a•{(\frac{1}{2})^x}-1$,g(x)=$\frac{1-m•{2}^{x}}{1+m•{2}^{x}}$.
(Ⅰ)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)当m=1时,判断函数g(x)的奇偶性并证明,并判断g(x)是否有上界,并说明理由;
(Ⅱ)若函数f(x)在[0,+∞)上是以2为上界的有界函数,求实数a的取值范围;
( IV)若m>0,函数g(x)在[0,1]上的上界是G,求G的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的方程lg3x×lg4x-a2=0有两个不相等的实数根,则方程的两根之积为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)={3^{{x^2}-2ax+5}}$在区间(-∞,1]内单调递减,则a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.[1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,设A,B,C是不共线的三点,$\overrightarrow{AB}=\overrightarrow p,\overrightarrow{AC}=\overrightarrow q$,若点D在线段BC上,且BC:CD=5:2,则向量$\overrightarrow{AD}$=$\frac{7}{5}\overrightarrow{q}-\frac{2}{5}\overrightarrow{p}$(用向量$\overrightarrow p,\overrightarrow q$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-2x-3>0,且¬p的¬q必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若{an}是递增数列,其中an=n2+λn,则实数λ的取值范围是λ>-3.

查看答案和解析>>

同步练习册答案