精英家教网 > 高中数学 > 题目详情
已知函数f(x)=λ•2x-4x,定义域为[1,3].
(1)若λ=6求函数f(x)的值域;
(2)若函数f(x)在区间[1,3]上是增函数,求实数λ的取值范围.
分析:(1)利用换元法,转化为二次函数,利用配方法可求函数f(x)的值域;
(2)求导函数,转化为f′(x)=λ2x•ln2-4x•ln4≥0在[1,3]上恒成立,即可求得结论.
解答:解:(1)设t=2x,∵x∈[1,3],∴t∈[2,8]
∴λ=6时,y=-t2+6t=-(t-3)2+9,2≤t≤8
∴t=3,即x=log23时,y取最大值9;t=8,即x=3时,y取最小值-16,
∴函数f(x)的值域是[-16,9];
(2)由题意,f′(x)=λ2x•ln2-4x•ln4≥0在[1,3]上恒成立,即λ≥2x+1在[1,3]上恒成立
∴λ≥16.
点评:本题考查复合函数,考查函数的值域,考查恒成立问题,考查导数知识的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案