精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{39}}{26}$

分析 根据平面向量数量积的定义公式求向量夹角的余弦值即可.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的单位向量,
∴$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=1×1×cos$\frac{π}{3}$=$\frac{1}{2}$,
|$\overrightarrow{a}$|=|$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$|=$\sqrt{{\overrightarrow{{e}_{1}}}^{2}+6\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{9\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{1+6×\frac{1}{2}+9}$=$\sqrt{13}$,
|$\overrightarrow{b}$|=|2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$|=$\sqrt{{4\overrightarrow{{e}_{1}}}^{2}-4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}{+\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{4-4×\frac{1}{2}+1}$=$\sqrt{3}$,
$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)•(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)=2${\overrightarrow{{e}_{1}}}^{2}$+5$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$-3${\overrightarrow{{e}_{2}}}^{2}$=2×1+5×$\frac{1}{2}$-3×1=$\frac{3}{2}$;
∴向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的余弦值为:
cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|×|\overrightarrow{b}|}$=$\frac{\frac{3}{2}}{\sqrt{13}×\sqrt{3}}$=$\frac{\sqrt{39}}{26}$.
故选:D.

点评 本题考查了平面向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Msin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如下图所示,其中A,B分别为函数f(x)图象的一个最高点和最低点,且A,B两点的横坐标分别为1,4,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则函数f(x)的一个单调减区间为(  )
A.(-6,-3)B.(6,9)C.(7,10)D.(10,13)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,圆柱的高为2,底面半径为3,AE,DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:BC⊥BE;
(2)求几何体AEB-DFC的体积;
(3)求平面DFC与平面ABF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对数函数f(x)的图象过点(2,-1),函数g(x)=f(|x|)-x2
(1)求函数f(x)的解析式; 
(2)求使g(x-1)+1<0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,A(0,-2),B(0,2),且|CA|,|AB|,|CB|成等差数列,则C点的轨迹方程是$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{12}=1(x≠0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题?x∈R,|x|<0的否定是?x0∈R,|x0|≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知${∫}_{0}^{1}$(x+m)dx=1,则函数f(x)=logm(3+2x-x2)的单调递减区间是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,棱长为1的正方体OABC-D′A′B′C′中,G为侧面正方形BCC′B′的中心,以顶点O为坐标原点建立如图所示的空间直角坐标系,则点G的坐标为($\frac{1}{2}$,1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=m(sinx+cosx)-4sinxcosx,x∈[0,$\frac{π}{2}$],m∈R.
(1)设t=sinx+cosx,x∈[0,$\frac{π}{2}$],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;
(2)若关于x的不等式f(x)≥0对所有的x∈[0,$\frac{π}{2}$]恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)-2m+4=0在[0,$\frac{π}{2}$]上有实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案