精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x|x一4|,那么函数y=f(x)的单调增区间是(-∞,2]和[4,+∞).

分析 去掉绝对值转化为分段函数,由二次函数的单调性可得.

解答 解:f(x)=x|x-4|=$\left\{\begin{array}{l}{{x}^{2}-4x,x≥4}\\{-{x}^{2}+4x,x<4}\end{array}\right.$,
由二次函数可知当x≥4时,y=x2-4x单调递增,
当x<4时,y=-x2+4x在(-∞,2]上单调递增,
故答案为:(-∞,2]和[4,+∞).

点评 本题考查函数的单调区间,转化为分段函数和二次函数是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a2+a4=16,a5-a3=4.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{{a}_{n}•{a}_{n+1}}$,求证b1+b2+…+bn≥$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设等差数列{an}前n项和Sn,a3+a8+a13=C,a4+a14=2C,其中C<0,则Sn在n等于7时取到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=-3x+7,g(x)=1g(ax2-4x+a),若?x1∈R,?x2∈R,使f(x1)=g(x2),则实数a的取值范围为(  )
A.[0,2]B.[0,2)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:函数f(x)=logax(a>0,a≠1)在(0,+∞)是增函数,q:?x∈R,x2+ax+1<0,若p∧(¬q)为真命题,则求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数y=f(x),满足f(x+2)=-$\frac{1}{f(x)}$,则(  )
A.f(x)不是周期函数B.f(x)是周期函数,且最小正周期为2
C.f(x)是周期函数,且最小正周期为4D.f(x)是周期函数,且4是它的一个周期

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=logax,g(x)=loga(5x-6),其中a>0且a≠1.
(1)若f(x)=g(x),求实数x的值;
(2)若f(x)>g(x),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设A={x|x2+4x≥0},B={x|2a<x<a-1},其中x∈R,如果A∩B=B.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求值:
(1)cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos$\frac{3π}{5}$+cos$\frac{4π}{5}$;
(2)tan10°+tan170°+sin1866°-sin(-606°)

查看答案和解析>>

同步练习册答案