精英家教网 > 高中数学 > 题目详情

设集合.
⑴求的值;
⑵判断函数的单调性,并用定义加以证明.

(1);(2)函数上单调递增,证明见解析.

解析试题分析:(1)由集合,所以有;求出的值,最后把的值代入集合中,验证是否满足集合的互异性;(2)根据函数单调性的定义即可得到函数的单调性.
试题解析:(1)集合

解得
此时

(2)由(1)知上单调递增.
任取
=
=

所以:,即
所以上单调递增.
考点:1.集合的互异性;2.集合的定义;3.函数单调性的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数时,,且对任意的
(1)求证:
(2)求证:对任意的,恒有
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用定义证明上单调递增;
(2)若上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的值;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求的值;
(2)证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实常数).
(1)当时,证明:
不是奇函数;②上的单调递减函数.
(2)设是奇函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,.
(Ⅰ).求表达式;
(Ⅱ).若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ).试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的减函数,满足.
(1)求证:
(2)若,解不等式.

查看答案和解析>>

同步练习册答案