【题目】如图,在三棱柱侧面.
(1)求证:平面平面;
(2)若,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)要证平面平面,转证平面AB,即证,;
(2) 以G为坐标原点,以的方向为x轴正方向,以的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.分别求出两个半平面的法向量,代入公式即可得到结果.
(1)如图,设,连接AG.
因为三棱柱的侧面为平行四边形,所以G为的中点,
因为,
所以为等腰三角形,所以,
又因为AB⊥侧面,且平面,
所以
又因为,
所以平面AB,又因为平面,
所以平面平面;
(2)由(1)知平面AB,所以B
以G为坐标原点,以的方向为x轴正方向,以的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.
由B易知四边形为菱形,因为
所以,
则可得,
所以
设平面的法向量,
由得:,取z=1,所以,
由(1)知=为平面AB的法向量,
则
易知二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别为k1、k2,求证:k1+k2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的离心率为,长轴的左、右端点分别为,.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于P,Q两点,直线,交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设直线与曲线相交于两点,当时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com