精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱侧面

(1)求证:平面平面

(2)若,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

(1)要证平面平面,转证平面AB,即证

(2) 以G为坐标原点,以的方向为x轴正方向,以的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.分别求出两个半平面的法向量,代入公式即可得到结果.

(1)如图,设,连接AG.

因为三棱柱的侧面为平行四边形,所以G的中点,

因为

所以为等腰三角形,所以

又因为AB侧面,且平面

所以

又因为

所以平面AB,又因为平面

所以平面平面

(2)由(1)知平面AB,所以B

以G为坐标原点,以的方向为x轴正方向,以的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.

B易知四边形为菱形,因为

所以

则可得

所以

设平面的法向量

得:,取z=1,所以

由(1)知=为平面AB的法向量,

易知二面角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,侧棱底面为棱的中点,

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,长轴的左、右端点分别为.

1)求椭圆C的方程;

2)设直线与椭圆C交于PQ两点,直线交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,判断函数在区间上的单调性;

(Ⅱ)若函数在定义域内有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点中点,底面为梯形,.

(1)证明:平面

(2)若四棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设直线与曲线相交于两点,当时,求的取值范围.

查看答案和解析>>

同步练习册答案