精英家教网 > 高中数学 > 题目详情

(本题满分12分)

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;

(2)求二面角的大小 ;

 

【答案】

(1)证明:过B1点作B1O⊥BA。∵侧面ABB1A1⊥底面ABC

∴B1O⊥面ABC ∴∠B1BA是侧面BB1与底面ABC所成的角。

∴∠B1BO=  在Rt△B1OB中,BB1=2,∴BO=BB1=1

 

又∵BB1=AB,∴BO=AB ∴O是AB的中点。

 

即点B1在平面ABC上的射影O为AB的中点                           …………6分

(2)连接AB1过点O作OM⊥AB1,连线CM,OC,

∵OC⊥AB,平面ABC⊥平面AA1BB1 ∴OC⊥平面AABB。

∴OM是斜线CM在平面AA1B1B的射影 ∵OM⊥AB1

∴AB1⊥CM  ∴∠OMC是二面角C—AB1—B的平面角

在Rt△OCM中,OC=,OM=

 

∴∠OMC=

∴二面角C—AB1—B的大小为                              …………12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案