精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{n}^{2}}{{a}_{n}{a}_{n+1}}$,n∈N*,求Tn=b1+b2+b3+…+bn

分析 (1)通过an=Sn-Sn-1计算、整理可知(an+1-an)(an+1+an)=2(an+1+an),进而可知数列{an}是首项为1、公差为2的等差数列,计算即得结论;
(2)通过(1)裂项可知bn=$\frac{1}{4}$+$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),利用分组法求和计算即得结论.

解答 解:(1)∵an+1=2$\sqrt{{S}_{n}}$+1,
∴4Sn=$({a}_{n+1}-1)^{2}$,
∴当n≥2时,4an=4(Sn-Sn-1
=$({a}_{n+1}-1)^{2}$-$({a}_{n}-1)^{2}$
=${{a}_{n+1}}^{2}$+2an-2an+1-${{a}_{n}}^{2}$,
整理得:(an+1-an)(an+1+an)=2(an+1+an),
又∵数列{an}的各项均为正数,
∴an+1-an=2(n≥2),
又∵${a}_{2}=2\sqrt{{S}_{1}}+1$=2+1=3=2+a1满足上式,
∴an+1-an=2,
∴数列{an}是首项为1、公差为2的等差数列,
∴其通项公式an=1+2(n-1)=2n-1;
(2)由(1)可知bn=$\frac{{n}^{2}}{{a}_{n}{a}_{n+1}}$=$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{1}{4}$•$\frac{4{n}^{2}-1+1}{(2n-1)(2n+1)}$=$\frac{1}{4}$+$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),n∈N*
∴Tn=b1+b2+b3+…+bn
=$\frac{1}{4}$n+$\frac{1}{8}$•(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{4}$n+$\frac{1}{8}$•(1-$\frac{1}{2n+1}$)
=$\frac{1}{4}$n+$\frac{1}{8}$•$\frac{2n}{2n+1}$
=$\frac{n(n+1)}{2(2n+1)}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{p}$=(an,-2n),$\overrightarrow{q}$=(2n+1,an+1),n∈N*,向量$\overrightarrow{p}$ 与$\overrightarrow{q}$ 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+1),求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若过点(1,-2)可做x2+y2=r2(r>0)的两条切线,则r的取值范围是-$\sqrt{5}$<r<$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知非零实数x,y满足不等式组$\left\{\begin{array}{l}{1≤x≤2}\\{x-y+1≤0}\end{array}\right.$,则u=$\frac{y-1}{x+1}$的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在(-2,2)上的单调递增的奇函数,若f(a-2)+f(2a-1)≥0,则实数a的值范围是[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{2x-{x}^{2},}}&{0≤x≤1}\\{-{x}^{2},}&{-1≤x≤0}\end{array}\right.$,则函数f(x)图象与直线y=x围成的封闭图形的面积是$\frac{π}{4}+\frac{17}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an},{bn}的通项分别为an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),证明:an>bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\sqrt{x-1}+\frac{1}{x+4}$的定义域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设U=R,A={x|x2+3x+2=0},则∁UA={x∈R|x≠-1,且x≠-2}.

查看答案和解析>>

同步练习册答案