精英家教网 > 高中数学 > 题目详情
已知函数y=x+
a
x
有如下性质:若常数a>0,则该函数在区间(0,
a
]
上是减函数,在区间[
a
,+∞)
上是增函数;函数y=x2+
b
x2
有如下性质:若常数c>0,则该函数在区间(0,
4b
]
上是减函数,在区间[[
4b
,+∞)
上是增函数;则函数y=xn+
c
xn
(常数c>0,n是正奇数)的单调增区间为
[
2nc
,+∞)
[
2nc
,+∞)
分析:类比函数的性质可知x>0时,xn+
c
xn
≥ 2
c
,当且仅当xn=
c
xn
,即x=
2nc
时取等号,从而可得函数在区间(0,
2nc
]
上是减函数,在区间[
2nc
,+∞)
上是增函数.
解答:解:由题意,类比函数的性质可知x>0时,xn+
c
xn
≥ 2
c
,当且仅当xn=
c
xn
,即x=
2nc
时取等号
从而可得函数在区间(0,
2nc
]
上是减函数,在区间[
2nc
,+∞)
上是增函数
故答案为:[
2nc
,+∞)
点评:本题考查类比推理,考查学生的阅读能力,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
旦(a>0)有如下的性质:在区间(0,
a
]上单调递减,在[
a
,+∞)上单调递增.
(1)如果函数f(x)=x+
2b
x
在(0,4]上单调递减,在[4,+∞)上单调递增,求常数b的值.
(2)设常数a∈[l,4],求函数y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
上是减函数,在
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
在(0,4)上是减函数,在(4,+∞)上是增函数,求实常数b的值;
(2)设常数c∈1,4,求函数f(x)=x+
c
x
(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,
(1)如果函数y=x+
3m
x
(x>0)
的值域是[6,+∞),求实数m的值;
(2)研究函数f(x)=x2+
a
x2
(常数a>0)在定义域内的单调性,并说明理由;
(3)若把函数f(x)=x2+
a
x2
(常数a>0)在[1,2]上的最小值记为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案